Core Knowledge

Topic: Probability (Trees and Venns)

Topic/Skill	Definition/Tips	Example
1. Tree	Tree diagrams show all the possible	Bag A Bag B
Diagrams	outcomes of an event and calculate their	$\frac{1}{-}$ red
	probabilities.	1 3
		red 2
	All branches must add up to 1 when	2 black
	adding downwards.	<u> </u>
	This is because the probability of	4 3 red
	something not happening is 1 minus the	black black
	probability that it does happen.	2 black
		3
	Multiply going across a tree diagram.	
	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2.7.1.1.	Add going down a tree diagram.	1 6: 1
2. Independent	The outcome of a previous event does not	An example of independent events
Events	influence/affect the outcome of a second	could be <u>replacing</u> a counter in a bag
2 D	event.	after picking it.
3. Dependent	The outcome of a previous event does	An example of dependent events could
Events	influence/affect the outcome of a second	be not replacing a counter in a bag after
	event.	picking it.
4. Probability	P(A) refers to the probability that event A	'Without replacement' P(Red Queen) refers to the probability
Notation	will occur.	of picking a Red Queen from a pack of
Notation	will occur.	cards.
		cards.
	P(A') refers to the probability that event	P(Blue') refers to the probability that
	A will <u>not</u> occur.	you do not pick Blue.
	II will not occur.	you do not pick blue.
	$P(A \cup B)$ refers to the probability that	P(Blonde ∪ Right Handed) refers to the
	event A or B or both will occur.	probability that you pick someone who
		is Blonde or Right Handed or both.
		č
	$P(A \cap B)$ refers to the probability that	P(Blonde ∩ Right Handed) refers to the
	both events A and B will occur.	probability that you pick someone who
		is both Blonde and Right Handed.
5. Venn	A Venn Diagram shows the relationship	$A \cup B$ $A \cap B$
Diagrams	between a group of different things and	$A \longrightarrow B$
	how they overlap.	
	V 1 1 1 1 1 V 5	
	You may be asked to shade Venn Diagrams	$(A \cap B)'$ $(A \cup B)'$
	as shown below and to the right.	
	$A \cup B$ $A \cap B$	B A B
	$\begin{bmatrix} A & B \\ A & B \end{bmatrix}$	
	The Union The Intersection	
	'A or B or Both' 'A and B'	

Core Knowledge

6. Venn Diagram Notation	E means 'element of a set' (a value in the set) { } means the collection of values in the set. ξ means the 'universal set' (all the values to consider in the question) A' means 'not in set A' (called complement) A ∪ B means 'A or B or both' (called Union)	Set A is the even numbers less than 10. A = $\{2, 4, 6, 8\}$ Set B is the prime numbers less than 10. B = $\{2, 3, 5, 7\}$ A \cup B = $\{2, 3, 4, 5, 6, 7, 8\}$ A \cap B = $\{2\}$
	Union) A∩B means 'A and B (called Intersection)	
7. AND rule for Probability	When two events, A and B, are independent:	What is the probability of rolling a 4 and flipping a Tails?
	$P(A \ and \ B) = P(A) \times P(B)$	$P(4 \text{ and } Tails) = P(4) \times P(Tails)$ $= \frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$
8. OR rule for Probability	When two events, A and B, are mutually exclusive:	What is the probability of rolling a 2 or rolling a 5?
	P(A or B) = P(A) + P(B)	$P(2 \text{ or } 5) = P(2) + P(5)$ $= \frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$
9. Conditional Probability	The probability of an event A happening, given that event B has already happened.	1st Bead 2nd Bead
1 Toolouity	With conditional probability, check if the numbers on the second branches of a tree diagram changes. For example, if you have 4 red beads in a bag of 9 beads and pick a red bead on the first pick, then there will be 3 red beads left out of 8 beads on the second pick.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Links to the four operations with fractions, algebraic venn and tree diagrams, listing outcomes, use of product rule