STM Knowledge Organiser Year: 10 Subject: Maths

Core Knowledge

Topic: Proportion

Topic/Skill	Definition/Tips	Example
1. Direct Proportion	If two quantities are in direct proportion, as one increases, the other increases by the same percentage.	$y \land y = kx$
	If y is directly proportional to x, this can be written as $y \propto x$	x
	An equation of the form $y = kx$ represents direct proportion, where k is the constant of proportionality.	
2. Inverse Proportion	If two quantities are inversely proportional, as one increases , the other decreases by the same percentage .	$y = \frac{k}{x}$
	If y is inversely proportional to x, this can be written as $y \propto \frac{1}{x}$	x
	An equation of the form $y = \frac{k}{x}$ represents inverse proportion.	Ļ
3. Using proportionality formulae	Direct: $\mathbf{y} = \mathbf{k}\mathbf{x}$ or $\mathbf{y} \propto \mathbf{x}$ Inverse: $\mathbf{y} = \frac{k}{x}$ or $\mathbf{y} \propto \frac{1}{x}$	p is directly proportional to q. When $p = 12$, $q = 4$. Find p when $q = 20$.
	 1. Solve to find k using the pair of values in the question. 2. Rewrite the equation using the k you have just found. 3. Substitute the other given value from the question in to the equation to find the missing value. 	1. $p = kq$ 12 = k x 4 so k = 3 2. $p = 3q$ 3. $p = 3 \times 20 = 60$, so $p = 60$
4. Direct Proportion with powers	Graphs showing direct proportion can be written in the form $y = kx^n$ Direct proportion graphs will always start at the origin.	Direct Proportion Graphs
5. Inverse Proportion with powers	Graphs showing inverse proportion can be written in the form $y = \frac{k}{x^n}$ Inverse proportion graphs will never start at the origin.	Inverse Proportion Graphs $y = \frac{2}{a}$ $y = \frac{3}{a^2}$ $y = \frac{3}{a^2}$

Core Knowledge