STM Knowledge Organiser Year: 11 Subject: Maths Topic: Further Quadratics

<u>Core Know</u> Topic/Skill	Definition/Tips	Example
1. Quadratic	A quadratic expression is of the form	Examples of quadratic expressions:
	$ax^2 + bx + c$	$ \begin{array}{r}x^2\\8x^2-3x+7\end{array} $
	where a, b and c are numbers, $a \neq 0$	Examples of non-quadratic expressions: $2x^3 - 5x^2$ $9x - 1$
2. Factorising Quadratics	When a quadratic expression is in the form $x^2 + bx + c$ find the two numbers that add to give b and multiply to give c.	$ \frac{5x - 1}{x^2 + 7x + 10} = (x + 5)(x + 2) $ (because 5 and 2 add to give 7 and multiply to give 10)
		$x^{2} + 2x - 8 = (x + 4)(x - 2)$ (because +4 and -2 add to give +2 and multiply to give -8)
3. Difference of Two Squares	An expression of the form $a^2 - b^2$ can be factorised to give $(a + b)(a - b)$	$x^{2} - 25 = (x + 5)(x - 5)$ $16x^{2} - 81 = (4x + 9)(4x - 9)$
4. Solving Quadratics $(ax^2 = b)$	 Isolate the x² term and square root both sides. Remember there will be a positive and a negative solution. 	$2x^{2} = 98$ $x^{2} = 49$ $x = \pm 7$
5. Solving Quadratics $(ax^2 + bx = 0)$	Factorise and then solve = 0 .	
6. Solving Quadratics by Factorising	Factorise the quadratic in the usual way. Solve = 0	Solve $x^2 + 3x - 10 = 0$ Exertorize: $(x + 5)(x - 2) = 0$
(a = 1)	Make sure the equation = 0 before factorising.	Factorise: $(x + 5)(x - 2) = 0$ x = -5 or x = 2
7. Quadratic Graph	A 'U-shaped' curve called a parabola. The equation is of the form $y = ax^2 + bx + c$, where <i>a</i> , <i>b</i> and <i>c</i> are numbers, $a \neq 0$. If $a < 0$, the parabola is upside down.	$y \land y = x^2 - 4x - 5$
8. Roots of a Quadratic	A root is a solution . The roots of a quadratic are the <i>x</i> - intercepts of the quadratic graph .	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

STM Knowledge Organiser Year: 11 Subject: Maths

Core Knowledge

	A transition of a sint is the maint rail and a	
9. Turning	A turning point is the point where a	
Point of a	quadratic turns.	
Quadratic		
	On a positive parabola , the turning point is	
	called a minimum .	
	On a negative parabola , the turning point	
	is called a maximum .	
10. Factorising	When a quadratic is in the form	Factorise $6x^2 + 5x - 4$
Quadratics	$ax^2 + bx + c$	
when $a \neq 1$	1. Multiply a by $c = ac$	$1.6 \times -4 = -24$
	2. Find two numbers that add to give b and	2. Two numbers that add to give $+5$ and
	multiply to give ac.	multiply to give -24 are $+8$ and -3
	3. Re-write the quadratic, replacing bx with	$3.6x^2 + 8x - 3x - 4$
	the two numbers you found.	4. Factorise in pairs:
	4. Factorise in pairs – you should get the	2x(3x+4) - 1(3x+4)
	same bracket twice	5. Answer = $(3x + 4)(2x - 1)$
	5. Write your two brackets – one will be the	
	repeated bracket, the other will be made of	
	the factors outside each of the two brackets.	
11. Solving	Factorise the quadratic in the usual way.	Solve $2x^2 + 7x - 4 = 0$
Quadratics by	Solve = 0	
Factorising		Factorise: $(2x - 1)(x + 4) = 0$
$(a \neq 1)$	Make sure the equation $= 0$ before	$\frac{1}{1}$
(u + 1)	factorising.	Factorise: $(2x - 1)(x + 4) = 0$ $x = \frac{1}{2} \text{ or } x = -4$
12.	A quadratic in the form $x^2 + bx + c$ can be	Complete the square of
Completing	written in the form $(x + p)^2 + q$	$y = x^2 - 6x + 2$
the Square		Answer:
(when $a = 1$)	1. Write a set of brackets with x in and half the value of b.	$(x-3)^2 - 3^2 + 2$
	2. Square the bracket.	$=(x-3)^2-7$
	3. Subtract $\left(\frac{b}{2}\right)^2$ and add <i>c</i> .	
		The minimum value of this expression
	4. Simplify the expression.	occurs when $(x - 3)^2 = 0$, which
		occurs when $x = 3$
	You can use the completing the square	When $x = 3$, $y = 0 - 7 = -7$
	form to help find the maximum or	
	minimum of quadratic graph.	Minimum point = $(3, -7)$
13.	A quadratic in the form $ax^2 + bx + c$ can	Complete the square of
Completing	be written in the form $\mathbf{p}(x+q)^2 + r$	$4x^2 + 8x - 3$
the Square	r(·····	Answer:
(when $a \neq 1$)	Use the same method as above, but	$4[x^2 + 2x] - 3$
· · · · -/	factorise out <i>a</i> at the start.	$= 4[(x + 1)^2 - 1^2] - 3$
		$= 4(x+1)^2 - 4 - 3$
		$= 4(r+1)^2 = 7$
14. Solving	Complete the square in the usual way and	$= 4(x+1)^2 - 7$ Solve $x^2 + 8x + 1 = 0$
0		$\int \int \int \partial x dx + 1 = 0$
Quadratics by	use inverse operations to solve.	Anguyan
Completing		Answer: $(x + 4)^2 = 4^2 + 1 = 0$
the Square		$(x+4)^2 - 4^2 + 1 = 0$

STM Knowledge Organiser Year: 11 Subject: Maths

Core Knowledge

		$(x+4)^2 - 15 = 0$ (x+4) ² = 15
		$(x+4) = \pm \sqrt{15}$
		$x = -4 \pm \sqrt{15}$
15. Solving	A quadratic in the form $ax^2 + bx + c = 0$	Solve $3x^2 + x - 5 = 0$
Quadratics	can be solved using the formula:	
using the	$-b \pm \sqrt{b^2 - 4ac}$	Answer:
Quadratic	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	a = 3, b = 1, c = -5
Formula	Use the formula if the quadratic does not	
	factorise easily.	$x = \frac{-1 \pm \sqrt{1^2 - 4 \times 3 \times -5}}{2 \times 3}$
		$x = \frac{2 \times 3}{2 \times 3}$
		$-1 \pm \sqrt{61}$
		$x = \frac{-1 \pm \sqrt{61}}{6}$
		, and the second s
		x = 1.14 or - 1.47 (2 d. p.)

Links to surds, substitution, re-arranging formulae, solving area problems, venn and tree diagrams using algebra