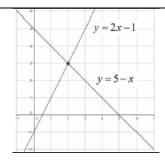
STM Knowledge Organiser Year: 11 Subject: Maths Topic: Simultaneous Equations

Core Knowledge

<u>Core Know</u> Topic/Skill	Definition/Tips	Example
1.	A set of two or more equations , each	2x + y = 7
Simultaneous Equations	involving two or more variables (letters).	3x - y = 8
Equations	The solutions to simultaneous equations	x = 3
	satisfy both/all of the equations.	y = 1
2. Variable	A symbol , usually a letter , which	In the equation $x + 2 = 5$, x is the
	represents a number which is usually	variable.
	unknown.	
3. Coefficient	A number used to multiply a variable.	6z
	It is the number that comes before/in front	6 is the coefficient
	of a letter.	z is the variable
4. Solving	1. Balance the coefficients of one of the	5x + 2y = 9
Simultaneous	variables.	10x + 3y = 16
Equations (by Elimination)	2. Eliminate this variable by adding or subtracting the equations (Same Sign	Multiply the first equation by 2.
Emmation	Subtract, Different Sign Add)	10x + 4y = 18
	3. Solve the linear equation you get using	10x + 1y = 16 10x + 3y = 16
	the other variable.	Same Sign Subtract (+10x on both)
	4. Substitute the value you found back into	y = 2
	one of the previous equations.	y = Z
	5. Solve the equation you get.	Substitute $y = 2$ in to equation.
	6. Check that the two values you get satisfy	Substitute $y = 2$ in to equation.
	both of the original equations.	$5x + 2 \times 2 = 9$
	8 1	5x + 2 + 2 = 9
		5x = 5
		x = 1
		$\lambda = 1$
		Solution: $x = 1, y = 2$
5. Solving	1. Rearrange one of the equations into the	y - 2x = 3
Simultaneous	form $y = \dots$ or $x = \dots$	3x + 4y = 1
Equations (by	2. Substitute the right-hand side of the	
Substitution)	rearranged equation into the other equation. 3. Expand and solve this equation.	Rearrange: $y - 2x = 3 \rightarrow y = 2x + 3$
	4. Substitute the value into the $y =$ or	Substitute: $3x + 4(2x + 3) = 1$
	$x = \dots$ equation.	
	5. Check that the two values you get	Solve: $3x + 8x + 12 = 1$
	satisfy both of the original equations.	11x = -11
		x = -1
		Substitute: $y = 2 \times -1 + 3$ y = 1
		Solution: $x = -1, y = 1$

STM Knowledge Organiser Year: 11 Subject: Maths


Core Knowledge

6. Solving		
Simultaneous		
Equations		
(Graphically)		

Draw the graphs of the two equations.

The solutions will be where the lines meet.

The solution can be written as a **coordinate**.

$$y = 5 - x$$
 and $y = 2x - 1$.

They meet at the point with coordinates (2,3) so the answer is x = 2 and y = 3

7. Solving Linear and Quadratic Simultaneous Equations

Method 1: If both equations are in the same form (eg. Both y = ...):

- 1. Set the equations **equal to each other**.
- 2. **Rearrange** to make the equation **equal to zero**.
- 3. **Solve** the quadratic equation.
- 4. **Substitute** the values back in to one of the equations.

Method 2: If the equations are not in the same form:

- 1. **Rearrange** the linear equation into the form y = ... or x = ...
- 2. **Substitute** in to the quadratic equation.
- 3. **Rearrange** to make the equation **equal to zero**.
- 4. **Solve** the quadratic equation.
- 5. **Substitute** the values back in to one of the equations.

You should get **two pairs of solutions** (two values for x, two values for y.)

Graphically, you should have **two points of intersection**.

Example 1

Solve

$$y = x^2 - 2x - 5$$
 and $y = x - 1$

$$x^{2} - 2x - 5 = x - 1$$

$$x^{2} - 3x - 4 = 0$$

$$(x - 4)(x + 1) = 0$$

$$x = 4$$
 and $x = -1$

$$y = 4 - 1 = 3$$
 and $y = -1 - 1 = -2$

Answers: (4,3) and (-1,-2)

Example 2

Solve
$$x^2 + y^2 = 5$$
 and $x + y = 3$

$$x = 3 - y$$

$$(3 - y)^{2} + y^{2} = 5$$

$$9 - 6y + y^{2} + y^{2} = 5$$

$$2y^{2} - 6y + 4 = 0$$

$$y^{2} - 3y + 2 = 0$$

$$(y - 1)(y - 2) = 0$$

$$y = 1 \text{ and } y = 2$$

$$x = 3 - 1 = 2 \text{ and } x = 3 - 2 = 1$$

Answers: (2,1) and (1,2)

Links to substitution, solving equations, equations of circles, quadratic formula, recognising and converting worded problems using algebraic notation