Core Knowledge

Topic: Proportion

Topic/Skill	Definition/Tips	Example
1. Direct Proportion	If two quantities are in direct proportion, as one increases, the other increases by the same percentage.	$y \land y = kx$
	If y is directly proportional to x, this can be written as $y \propto x$	x
	An equation of the form $y = kx$ represents direct proportion, where k is the constant of proportionality.	
2. Inverse Proportion	If two quantities are inversely proportional, as one increases , the other decreases by the same percentage .	$y = \frac{k}{x}$
	If y is inversely proportional to x, this can be written as $y \propto \frac{1}{x}$	x
	An equation of the form $y = \frac{k}{x}$ represents inverse proportion.	÷
3. Using	Direct : $\mathbf{y} = \mathbf{k}\mathbf{x}$ or $\mathbf{y} \propto \mathbf{x}$	p is directly proportional to q.
proportionality		When $p = 12$, $q = 4$.
formulae	Inverse: $\mathbf{y} = \frac{k}{x}$ or $\mathbf{y} \propto \frac{1}{x}$	Find p when $q = 20$.
	1. Solve to find k using the pair of values	1. p = kq
	in the question.	$12 = k \times 4$
	2. Rewrite the equation using the k you	so k = 3
	have just found.	2 - 2 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -
	3. Substitute the other given value from	2. $p = 3q$
	the question in to the equation to find the missing value .	3. $p = 3 \times 20 = 60$, so $p = 60$
4. Direct	Graphs showing direct proportion can be	Direct Proportion Graphs
Proportion with powers	written in the form $y = kx^n$ Direct proportion graphs will always start at the origin.	$ \begin{array}{c} $
5. Inverse	Graphs showing inverse proportion can be	Inverse Proportion Graphs
Proportion with powers	written in the form $y = \frac{k}{x^n}$	
	Inverse proportion graphs will never start at the origin.	$ \begin{array}{c} y = \frac{3}{s^2} \\ 4 \\ y = \frac{0.5}{s^2} \\ -2 \\ \end{array} $

Links to finding the gradient, rate, real-life scenarios, completing tables of points to plot graphs, percentage increases and decreases, graphs to the power of