STM Knowledge Organiser Year: 8 Subject: Maths

Topic: Sequences

Core Knowledge			
Topic/Skill	Definition/Tips	Example	
1. Linear Sequence	A number pattern with a common difference .	2, 5, 8, 11 is a linear sequence	
2. Term	Each value in a sequence is called a term.	In the sequence 2, 5, 8, 11, 8 is the third term of the sequence.	
3. Term-to- term rule	A rule which allows you to find the next term in a sequence if you know the previous term .	First term is 2. Term-to-term rule is 'add 3' Sequence is: 2, 5, 8, 11	
4. nth term	 A rule which allows you to calculate the term that is in the nth position of the sequence. Also known as the 'position-to-term' rule. n refers to the position of a term in a sequence. 	Sequence is: 2, 5, 8, 11 nth term is $3n - 1$ The 100 th term is $3 \times 100 - 1 = 299$	
5. Finding the nth term of a linear sequence	 Find the difference. Multiply that by n. Substitute n = 1 to find out what number you need to add or subtract to get the first number in the sequence. 	Find the nth term of: 3, 7, 11, 15 1. Difference is +4 2. Start with $4n$ 3. $4 \times 1 = 4$, so we need to subtract 1 to get 3. nth term = $4n - 1$	
6. Fibonacci type sequences	A sequence where the next number is found by adding up the previous two terms	The Fibonacci sequence is: 1,1,2,3,5,8,13,21,34 An example of a Fibonacci-type sequence is: 4,7,11,18,29	
7. Geometric Sequence	A sequence of numbers where each term is found by multiplying the previous one by a number called the common ratio, r .	An example of a geometric sequence is: 2, 10, 50, 250 The common ratio is 5 Another example of a geometric sequence is: 81, -27, 9, -3, 1 The common ratio is $-\frac{1}{3}$	
8. Quadratic Sequence	A sequence of numbers where the second difference is constant . A quadratic sequence will have a n^2 term.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
9. nth term of a geometric sequence	where a is the first term and r is the common ratio	The nth term of 2, 10, 50, 250 Is $2 \times 5^{n-1}$	

STM Knowledge Organiser Year: 8 Subject: Maths

Core Knowledge

10. nth term of	1. Find the first and second differences.	Find the nth term of: 4, 7, 14, 25, 40
a quadratic	2. Halve the second difference and multiply	
-	2. That is the second difference and multiply this by n^2 .	Answer:
sequence	5	
	3. Substitute $n = 1,2,3,4$ into your	Second difference = $+4 \rightarrow$ nth term =
	expression so far.	$2n^2$
	4. Subtract this set of numbers from the	
	corresponding terms in the sequence from	Sequence: 4, 7, 14, 25, 40
	the question.	$2n^2$ 2, 8, 18, 32, 50
	5. Find the nth term of this set of numbers.	Difference: 2, -1, -4, -7, -10
	6. Combine the nth terms to find the overall	
	nth term of the quadratic sequence.	Nth term of this set of numbers is
	1	-3n + 5
	Substitute values in to check your nth term	517 1 5
	works for the sequence.	Overall nth term: $2n^2 - 3n + 5$
	works for the sequence.	Overall hull term. $2n = 3n + 3$
11 Trion gulor	The sequence which somes from a pattern	
11. Triangular	The sequence which comes from a pattern	1 3 6 10
numbers	of dots that form a triangle.	
	1, 3, 6, 10, 15, 21	