STM Knowledge Organiser Year: 9 Subject: Maths Topic: Systematic Listing

Core Know	ledge Definition/Tips	Example
Topic/Skill 1.	•	How many combinations of two
Combination	A collection of things, where the order does not matter .	ingredients can you make with apple, banana and cherry?
		Apple, Banana Apple, Cherry Banana, Cherry 3 combinations
2. Permutation	A collection of things, where the order does matter .	You want to visit the homes of three friends, Alex (A), Betty (B) and Chandra (C) but haven't decided the order. What choices do you have?
		ABC ACB BAC BCA CAB CBA
3. Permutations with	When something has n different types, there are n choices each time.	How many permutations are there for a three-number combination lock?
Repetition	Choosing r of something that has n different types, the permutations are: $n \times n \times (r \ times) = n^r$	10 numbers to choose from $\{1, 2,10\}$ and we choose 3 of them \rightarrow $10 \times 10 \times 10 = 10^3 = 1000$ permutations.
4. Permutations without	We have to reduce the number of available choices each time.	How many ways can you order 4 numbered balls?
Repetition	One you have chosen something, you cannot choose it again.	$4 \times 3 \times 2 \times 1 = 24$
5. Factorial	The factorial symbol '!' means to multiply a series of descending integers to 1.	$4! = 4 \times 3 \times 2 \times 1 = 24$
	Note: $0! = 1$	
6. Product Rule for Counting	If there are x ways of doing something and y ways of doing something else, then there are xy ways of performing both.	To choose one of $\{A, B, C\}$ and one of $\{X, Y\}$ means to choose one of $\{AX, AY, BX, BY, CX, CY\}$
		The rule says that there are $3 \times 2 = 6$ choices.

Links to probability, venn diagrams, two way tables, sample space diagram